CDS 230

Modeling and Simulation I

Module 9
Modeling Unequal Chances

MAGERGE
UNIVERSITY
Dr. Hamdi Kavak
http://www.hamdikavak.com
hkavak@gmu.edu

Recall modeling equal chances

Decimal numbers

np.random.uniform (a, b)

Integers

np.random.randint ($c, d+1$)

- Is equal chances sufficient to model all sorts of uncertainty?

How to model unequal chances?

- Recall the traffic flow example


```
chance = np.random.uniform(0, 100) # between 0 and 100
if chance <= 15.0: # first 15 percent => turn left
    print("Turn left")
elif 15.0 < chance <= 95.0: # between 15 and 95 (80+15) percent => go straight
    print("Go straight")
else:
    print("Turn right") # the rest 5% (between 95 and 100) => turn right
```


How to model unequal chances easier?

- We can use np.random. choice () function which takes a list or NumPy array.
np. random. choice([1, 2, 3, 4, 5, 6])
- The result is one of these six values, each with equal chances.
- Going back to the traffic flow example.

Another approach to model unequal chances

Decimal numbers

- Identify quantities (or percentages) for different ranges.
- 1 random number between 0 and 10.
- 19 random number between 10 and 20.
- 79 random number between 20 and 30 .
- 166 random number between 30 and 40 .
- 251 random number between 40 and 50 .
- 234 random number between 50 and 60 .
- 180 random number between 60 and 70 .
- ...

Integers

- Identify quantities (or percentages) for different integer values.
- 30% chance for 1 .
- 20% chance for 2 .
- 10% chance for 3 .
- 5\% chance for 4.
- 3% chance for 5 .
- 3\% chance for 10.
- 1% chance for 11 .
-

CDS 230 - Modeling and Simulation 1 - © Dr. Hamdi Kavak

A neat solution to model unequal chances

- Use probability distributions other than uniform.
- Probability distribution: A function that maps a value to a probability of occurrence.

- We will go over three such non-uniform probability distributions
- Triangular distribution
- Normal distribution
- Poisson distribution

Triangular distribution

- Is used to model the probability of decimal numbers.
- Is used when we have a lack of data but some subjective knowledge about likely minimum, maximum, likely values.
- Needs three parameters:
- left
- mode
- right
- NumPy syntax

```
- numpy.random.triangular(left, mode,
    right, size)

\section*{Normal distribution}
- Is used to model the probability of decimal numbers.
- Is "to go" distribution for unknown probabilities in many sciences.
- Needs two parameters:
- mean
- standard deviation.
- NumPy syntax

- numpy.random.normal(loc, scale, size)

\section*{Lets do live coding}

\section*{Poisson distribution}
- Is used to model the probability of integer numbers.
- Is "to go" distribution when modeling independent quantities.
- Number of emails coming in an hour.
- Number of people entering this building every hour.

- Needs only one parameter: intensity which is expected mean.
- NumPy syntax
- numpy.random.poisson(lam, size) Lets do live coding

\section*{Terms you might see elsewhere}
\begin{tabular}{|c|c|c|}
\hline Term & \multicolumn{2}{|l|}{Explanation} \\
\hline Probability & \multicolumn{2}{|l|}{Chance} \\
\hline Probability distribution Statistical distribution & \multicolumn{2}{|l|}{The shape of a probability space (how values are distributed)} \\
\hline Sampling & \multicolumn{2}{|l|}{Drawing a value/a set of values from a probability distribution} \\
\hline Continuous numbers & \multicolumn{2}{|l|}{Decimals} \\
\hline Discrete numbers & \multicolumn{2}{|l|}{Integers} \\
\hline Continuous distribution & \multicolumn{2}{|l|}{A distribution representing decimal numbers} \\
\hline Discrete distribution & \multicolumn{2}{|l|}{A distribution representing integer numbers} \\
\hline Gaussian distribution Laplace-Gauss distribution Bell curve & Normal distribution & \multirow[t]{2}{*}{} \\
\hline & CDS 230 - Modeling and Simulation 1 - © Dr. Hamdi Kavak & \\
\hline
\end{tabular}

\section*{Other distributions you can sample from}
- beta
- binomial
- chisquare
- dirichlet
- exponential
- f
- gamma
- geometric
- gumbel
- hypergeometric
- laplace
- logistic
- lognormal

More comprehensive index: https://docs.scipy.org/doc/numpy-1.14.0/reference/routines.random.html
s = np.random.lognormal(3.0, 1.0, size=1000)
```

plt.hist(s,50)

```
plt.show()
```

